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Some Exact Solutions to the Sine-Gordon Equations 
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We present some new exact (solitary and traveling) solutions to the sine-Gordon 
equations c2uxx - u ,  = et sin u and cuxt + ut, = ct sin u, and the dissipative 
sine-Gordon equation c2u= - u,t - ~lut = al  sin u + or2 sin(2u). Here, ct, cq, 
and ct 2 are the coupling constants, real numbers; c is the intrinsic speed of  the 
propagating wave determined by the system; and ~/ is the damping factor. The 
physical implication is briefly discussed. 

In this paper, we report some new exact (solitary and traveling) solutions 
to the sine-Gordon equations and the modified/dissipative sine-Gordon equa- 
tion, introducing a damping term and a higher-order approximation. 

I. Let us consider the sine-Gordon equation 

C2Uxx - -  Utt = Ot sin u (1) 

which has been widely used in the physical sciences (Barone et al., 1971; 
Scott et al., 1973; Lamb, 1971; Drazin and Johnson, 1989; Sachdev, 1987; 
Kivshar and Malomed, 1989; Mikeska and Steiner, 1991; Newell and Molo- 
ney, 1992). Here a is the coupling constant, a real number; c is the intrinsic 
speed of the propagating wave determined by the system. A well-known 
exact (solitary and traveling) solution is 

u(x - vt) = 4 arctan~expL+-/c~_v2 ) (x - v t  + co) (2) 

where v is a positive real number defined as the speed of the imposed traveling 
wave, and Co is an arbitrary constant determined by the initial condition. 
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In this paper, we present a new exact (solitary and traveling) solution 

u ( x  - v t )  = +-2 arctan sinh ( x  - v t  + co)  (3) 

To our best knowledge, this solution has not been reported in the literature. 
As far as traveling solutions are concerned, we use the variable transfor- 

mation 

= X - -  v t  (4) 

Thus, equation (1) is simplified to be 

(c 2 - v 2 ) u "  = et sin u (5) 

Let us consider the following a n s a t z :  

d u  u 
- -  = u '  = a b  c o s  - (6) 
d~ a 

where a and b are undetermined real numbers. 
Direct integration of equation (6) yields the solution 

u ( x  - v t )  = u ( { )  = a arctan{sinh[b({ + Co)]} (7) 

From equation (6), we have 

a b  e . 2 u  
u" = - - - -  sin - -  (8) 

2 a 

Substituting this equation into equation (5) yields the equality 

1 a b 2 ( c 2  v2)sin 2 u  . . . .  = ~ sin u (9) 
2 a 

Let a = 2; we obtain 

+[ a ~i/2 
b = - ~ , ]  (lO) 

Equation (3) is obtained by substituting these results into equation (7). 
The mathematical differences between equations (2) and (3) can be 

easily seen. Due to the failure of the superposition principle for nonlinear 
systems, equation (3) cannot be derived from equation (2) by a simple algebra. 
It is straightforward to show that equation (3) cannot be obtained by the 
B~icklund transformation either. Furthermore, in order for the solutions (2) 
and (3) to be real functions, when a > 0, v < c for equation (2) and v > c 
for equation (3). On the other hand, when a < 0, v > c for equation (2) and 
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v < c for equation (3). This point will be stressed from a physical point of 
view below. 

Now, let us see the differences in physics between equations (2) and 
(3). In the field theory, only ~ > 0 is allowed, and c is the speed of the light 
in vacuum, which is the upper limit of any observable physical propagations. 
Thus, equation (3) may not be used to describe an observable physical 
parameter. However, in other systems, such as optical pulse propagation in 
a resonant medium (Lamb, 1971) and one-dimensional magnets (Mikeska 
and Steiner, 1991), etc., ~ < 0 is allowed. Furthermore, in these systems, 
when c~ < 0, the solution for v < c, equation (2), may not correspond to an 
observable physical property either. Therefore, if both equations (2) and (3) 
describe two measurable physical processes in a system, the two events are 
substantially different. A Cherenkov effect-like mechanism may be considered 
as a heuristic argument. For et > 0, equation (2) describes the normal solitary 
propagation, while equation (3) expresses the Cherenkov-like propagation 
whose instability (Barone et  al., 1971) corresponds to an energy absorption/ 
radiation. The parallel conclusions should also be true: for et < 0, equation 
(2) describes the Cherenkov-like propagation, while equation (3) expresses 
the normal solitary propagation. This argument needs to be verified by experi- 
ments. 

In addition, it is easy to show that equation (3) has other identical 
representations as 

u(x  - vt) = ___2 arcsin tanh ~ (x - v t  + Co) (11) 

and 

{ 1'2 ]} 
u(x  - vt) = ---4 arctan tanh -~ ~v-T-S~_ cZ) (x - v t  + Co) (12) 

II. Let us consider the sine-Gordon equation 

cuxr + uu = ~ sin u (13) 

which is used to describe the propagation of an ultrashort laser pulse in a 
medium whose absorption bands are near or at the frequency of an applied 
pulse (Barone et  al., 1971). 

Using the ansa tz  

du ab 2u 
- u' = s i n -  (14) 

d~ f f  a 
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we can easily obtain the solution as 

f I- / ~ \'/2 ] }  
u ( x - v t ) = 4 a r c t a n t e x p [ - + t v - 5 - - - - - - _ c v )  ( x - v t + c o )  (15) 

The real function of  the solution requires v > c for  et > 0, and v < c for 
a < 0 .  

Using ansatz (6) and equation (8), we  obtain the solution 

u(x - vt) = ___2 arctan sinh ~ (x - vt + Co) (16) 

Similarly, it requires v < c for a > 0, and v > c for a < 0. 
It is trivial to show that equation (16) has other identical representa-  

tions as 

v(x - vt) = _+2 arcsin tanh (x - vt + co) (17) 

and { [1/o,,2 ]} 
u ( x -  v t ) =  + 4  arctan tanh ~ (c-~-~_r2) ( x -  vt + Co) (18) 

I I I .  Let  us consider the dissipative s ine-Gordon equation 

c2u,~ - u ,  - ~lut = ~l  sin u + ~z sin(2u) 

Here,  the coupling constants etl and a2 are real numbers ,  and the damping 
fac tor  ~l is also a real number.  The  a2 sin(2u) term is modeled  as a higher- 
order approximat ion compared  with the origin s ine-Gordon equation. It is 
obvious  that the introduction of  the two new terms makes  the equat ion more  
realistic for  describing the physical  systems.  

Through introducing the ansatz (14), we  previously obtained an exact 
traveling (solitary kink) solution as (Yang, 1994; Yang et al., 1994) 

[ (q. (20t2~/2~ or2) 1/2 Otl )] 
u(x - vt) = 2 arctan exp x - - -  t + Co (19) ,y 

Using ansatz (6) and equation (8), we  have obtained another  exact  traveling 
solution as 

'rr [ (~(20t2~/2~ or2) 1/2 )] 
u(x - vt) = ~- - arctan sinh x + or--21 t + Co (20) 

When  et2 = O, i.e., without considering the sin(2u) term, the solutions will 
be easily simplified. 
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As discussed above, the differences between these two solutions are 
clear to see. Similarly, the new solution has other identical representations: 

"IT [ ((2o~2"y2 + ot21)1/2 ~ 1 ) ]  
u ( x  - v t )  = -~ - arcsin tanh + x + - -  t + Co (21) 

cy 7 

and 

"IT [ ((20~272-t-0~2)1/2 O- 1 ) ]  
u ( x  - v t )  = -~ - 2 arctan tanh _+ 2c',/ x + ~yy t + Co (22) 

In summary, by introducing a proper a n s a t z ,  we have obtained some exact 
(solitary and traveling) solutions to the sine-Gordon equations and a modified/ 
dissipative sine-Gordon equation. The corresponding physical interpretations 
need to be verified by experiments. 
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